Gujarati
Hindi
2. Electric Potential and Capacitance
medium

The electrostatic potential inside a charged spherical ball is given by : $V = b -ar^2$, where  $r$ is the distance from the centre ; $a$ and $b$ are constants. Then, the charge density inside the ball is :

A

$24\pi \,a{\varepsilon _0}r$

B

$6\,a{\varepsilon _0}r$

C

$24\pi \,a{\varepsilon _0}$

D

$6\,a{\varepsilon _0}$

Solution

Electric filed, $E=-\frac{d \phi}{d r}=-2 a r$

By Gauss's law, $E .4 \pi r^{2}=\frac{q_{i n}}{\epsilon_{0}}$

$\Rightarrow q_{i n}=(-2 a r) 4 \pi r^{2} \epsilon_{0}=-8 \pi \epsilon_{0} a r^{3}$

Now $\frac{d q_{i n}}{d r}=-24 \pi \epsilon_{0} a r^{2}$ and $V=\frac{4}{3} \pi r^{3}, \frac{d V}{d r}=4 \pi r^{2}$

Charge density, $\rho=\frac{d q_{i n}}{d V}=\frac{d q_{i n}}{d r} \times \frac{d r}{d V}=\left(-24 \pi \epsilon_{0} a r^{2}\right) \times \frac{1}{4 \pi r^{2}}=-6 \epsilon_{0} a$

Standard 12
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.